Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Identification of Parameters for Large-scale Kinetic Models (1904.07197v2)

Published 15 Apr 2019 in q-bio.QM, cs.NA, and math.NA

Abstract: Inverse problem for the identification of the parameters for large-scale systems of nonlinear ordinary differential equations (ODEs) arising in systems biology is analyzed. In a paper in \textit{Mathematical Biosciences, 305(2018), 133-145}, the authors implemented the numerical method suggested by one of the authors in \textit{J. Optim. Theory Appl., 85, 3(1995), 509-526} for identification of parameters in moderate scale models of systems biology. This method combines Pontryagin optimization or Bellman's quasilinearization with sensitivity analysis and Tikhonov regularization. We suggest modification of the method by embedding a method of staggered corrector for sensitivity analysis and by enhancing multi-objective optimization which enables application of the method to large-scale models with practically non-identifiable parameters based on multiple data sets, possibly with partial and noisy measurements. We apply the modified method to a benchmark model of a three-step pathway modeled by 8 nonlinear ODEs with 36 unknown parameters and two control input parameters. The numerical results demonstrate geometric convergence with a minimum of five data sets and with minimum measurements per data set. Software package \textit{qlopt} is developed and posted in GitHub. MATLAB package AMIGO2 is used to demonstrate advantage of \textit{qlopt} over most popular methods/software such as \textit{lsqnonlin}, \textit{fmincon} and \textit{nl2sol}.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube