Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Painting on Placement: Forecasting Routing Congestion using Conditional Generative Adversarial Nets (1904.07077v1)

Published 15 Apr 2019 in cs.LG and cs.CV

Abstract: Physical design process commonly consumes hours to days for large designs, and routing is known as the most critical step. Demands for accurate routing quality prediction raise to a new level to accelerate hardware innovation with advanced technology nodes. This work presents an approach that forecasts the density of all routing channels over the entire floorplan, with features collected up to placement, using conditional GANs. Specifically, forecasting the routing congestion is constructed as an image translation (colorization) problem. The proposed approach is applied to a) placement exploration for minimum congestion, b) constrained placement exploration and c) forecasting congestion in real-time during incremental placement, using eight designs targeting a fixed FPGA architecture.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)