Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Reduced Order Modeling for Nonlinear PDE-constrained Optimization using Neural Networks (1904.06965v2)

Published 15 Apr 2019 in math.NA, cs.NA, math.AP, and math.OC

Abstract: Nonlinear model predictive control (NMPC) often requires real-time solution to optimization problems. However, in cases where the mathematical model is of high dimension in the solution space, e.g. for solution of partial differential equations (PDEs), black-box optimizers are rarely sufficient to get the required online computational speed. In such cases one must resort to customized solvers. This paper present a new solver for nonlinear time-dependent PDE-constrained optimization problems. It is composed of a sequential quadratic programming (SQP) scheme to solve the PDE-constrained problem in an offline phase, a proper orthogonal decomposition (POD) approach to identify a lower dimensional solution space, and a neural network (NN) for fast online evaluations. The proposed method is showcased on a regularized least-square optimal control problem for the viscous Burgers' equation. It is concluded that significant online speed-up is achieved, compared to conventional methods using SQP and finite elements, at a cost of a prolonged offline phase and reduced accuracy.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.