Papers
Topics
Authors
Recent
2000 character limit reached

Predicting human decisions with behavioral theories and machine learning (1904.06866v3)

Published 15 Apr 2019 in cs.AI, cs.GT, and cs.LG

Abstract: Predicting human decisions under risk and uncertainty remains a fundamental challenge across disciplines. Existing models often struggle even in highly stylized tasks like choice between lotteries. We introduce BEAST Gradient Boosting (BEAST-GB), a hybrid model integrating behavioral theory (BEAST) with machine learning. We first present CPC18, a competition for predicting risky choice, in which BEAST-GB won. Then, using two large datasets, we demonstrate BEAST-GB predicts more accurately than neural networks trained on extensive data and dozens of existing behavioral models. BEAST-GB also generalizes robustly across unseen experimental contexts, surpassing direct empirical generalization, and helps refine and improve the behavioral theory itself. Our analyses highlight the potential of anchoring predictions on behavioral theory even in data-rich settings and even when the theory alone falters. Our results underscore how integrating machine learning with theoretical frameworks, especially those-like BEAST-designed for prediction, can improve our ability to predict and understand human behavior.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 13 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: