Pun Generation with Surprise (1904.06828v1)
Abstract: We tackle the problem of generating a pun sentence given a pair of homophones (e.g., "died" and "dyed"). Supervised text generation is inappropriate due to the lack of a large corpus of puns, and even if such a corpus existed, mimicry is at odds with generating novel content. In this paper, we propose an unsupervised approach to pun generation using a corpus of unhumorous text and what we call the local-global surprisal principle: we posit that in a pun sentence, there is a strong association between the pun word (e.g., "dyed") and the distant context, as well as a strong association between the alternative word (e.g., "died") and the immediate context. This contrast creates surprise and thus humor. We instantiate this principle for pun generation in two ways: (i) as a measure based on the ratio of probabilities under a LLM, and (ii) a retrieve-and-edit approach based on words suggested by a skip-gram model. Human evaluation shows that our retrieve-and-edit approach generates puns successfully 31% of the time, tripling the success rate of a neural generation baseline.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.