Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Axiomatic Approach to Regularizing Neural Ranking Models

Published 15 Apr 2019 in cs.IR | (1904.06808v1)

Abstract: Axiomatic information retrieval (IR) seeks a set of principle properties desirable in IR models. These properties when formally expressed provide guidance in the search for better relevance estimation functions. Neural ranking models typically contain a large number of parameters. The training of these models involve a search for appropriate parameter values based on large quantities of labeled examples. Intuitively, axioms that can guide the search for better traditional IR models should also help in better parameter estimation for machine learning based rankers. This work explores the use of IR axioms to augment the direct supervision from labeled data for training neural ranking models. We modify the documents in our dataset along the lines of well-known axioms during training and add a regularization loss based on the agreement between the ranking model and the axioms on which version of the document---the original or the perturbed---should be preferred. Our experiments show that the neural ranking model achieves faster convergence and better generalization with axiomatic regularization.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.