Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

An Axiomatic Approach to Regularizing Neural Ranking Models (1904.06808v1)

Published 15 Apr 2019 in cs.IR

Abstract: Axiomatic information retrieval (IR) seeks a set of principle properties desirable in IR models. These properties when formally expressed provide guidance in the search for better relevance estimation functions. Neural ranking models typically contain a large number of parameters. The training of these models involve a search for appropriate parameter values based on large quantities of labeled examples. Intuitively, axioms that can guide the search for better traditional IR models should also help in better parameter estimation for machine learning based rankers. This work explores the use of IR axioms to augment the direct supervision from labeled data for training neural ranking models. We modify the documents in our dataset along the lines of well-known axioms during training and add a regularization loss based on the agreement between the ranking model and the axioms on which version of the document---the original or the perturbed---should be preferred. Our experiments show that the neural ranking model achieves faster convergence and better generalization with axiomatic regularization.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.