Papers
Topics
Authors
Recent
2000 character limit reached

Deep-learning PDEs with unlabeled data and hardwiring physics laws

Published 13 Apr 2019 in physics.comp-ph and cs.LG | (1904.06578v1)

Abstract: Providing fast and accurate solutions to partial differential equations is a problem of continuous interest to the fields of applied mathematics and physics. With the recent advances in machine learning, the adoption learning techniques in this domain is being eagerly pursued. We build upon earlier works on linear and homogeneous PDEs, and develop convolutional deep neural networks that can accurately solve nonlinear and non-homogeneous equations without the need for labeled data. The architecture of these networks is readily accessible for scientific disciplines who deal with PDEs and know the basics of deep learning.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.