Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Statistical-Based Privacy-Preserving Scheme with Malicious Consumers Identification for Smart Grid (1904.06576v2)

Published 13 Apr 2019 in cs.CR and eess.SP

Abstract: As smart grids are getting popular and being widely implemented, preserving the privacy of consumers is becoming more substantial. Power generation and pricing in smart grids depends on the continuously gathered information from the consumers. However, having access to the data relevant to the electricity consumption of each individual consumer is in conflict with its privacy. One common approach for preserving privacy is to aggregate data of different consumers and to use their smart-meters for calculating the bills. But in this approach, malicious consumers who send erroneous data to take advantage or disrupt smart grid cannot be identified. In this paper, we propose a new statistical-based scheme for data gathering and billing in which the privacy of consumers is preserved, and at the same time, if any consumer with erroneous data can be detected. Our simulation results verify these matters.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.