Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

When does OMP achieve exact recovery with continuous dictionaries? (1904.06311v3)

Published 12 Apr 2019 in cs.IT, math.IT, and physics.data-an

Abstract: This paper presents new theoretical results on sparse recovery guarantees for a greedy algorithm, Orthogonal Matching Pursuit (OMP), in the context of continuous parametric dictionaries. Here, the continuous setting means that the dictionary is made up of an infinite uncountable number of atoms. In this work, we rely on the Hilbert structure of the observation space to express our recovery results as a property of the kernel defined by the inner product between two atoms. Using a continuous extension of Tropp's Exact Recovery Condition, we identify key assumptions allowing to analyze OMP in the continuous setting. Under these assumptions, OMP unambiguously identifies in exactly $k$ steps the atom parameters from any observed linear combination of $k$ atoms. These parameters play the role of the so-called support of a sparse representation in traditional sparse recovery. In our paper, any kernel and set of parameters that satisfy these conditions are said to be admissible. In the one-dimensional setting, we exhibit a family of kernels relying on completely monotone functions for which admissibility holds for any set of atom parameters. For higher dimensional parameter spaces, the analysis turns out to be more subtle. An additional assumption, so-called axis admissibility, is imposed to ensure a form of delayed recovery (in at most $kD$ steps, where $D$ is the dimension of the parameter space). Furthermore, guarantees for recovery in exactly $k$ steps are derived under an additional algebraic condition involving a finite subset of atoms (built as an extension of the set of atoms to be recovered). We show that the latter technical conditions simplify in the case of Laplacian kernels, allowing us to derive simple conditions for $k$-step exact recovery, and to carry out a coherence-based analysis in terms of a minimum separation assumption between the atoms to be recovered.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube