Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Maximizing Online Utilization with Commitment (1904.06150v1)

Published 12 Apr 2019 in cs.DS

Abstract: We investigate online scheduling with commitment for parallel identical machines. Our objective is to maximize the total processing time of accepted jobs. As soon as a job has been submitted, the commitment constraint forces us to decide immediately whether we accept or reject the job. Upon acceptance of a job, we must complete it before its deadline $d$ that satisfies $d \geq (1+\epsilon)\cdot p + r$, with $p$ and $r$ being the processing time and the submission time of the job, respectively while $\epsilon>0$ is the slack of the system. Since the hard case typically arises for near-tight deadlines, we consider $\varepsilon\leq 1$. We use competitive analysis to evaluate our algorithms. Our first main contribution is a deterministic preemptive online algorithm with an almost tight competitive ratio on any number of machines. For a single machine, the competitive factor matches the optimal bound $\frac{1+\epsilon}{\epsilon}$ of the greedy acceptance policy. Then the competitive ratio improves with an increasing number of machines and approaches $(1+\epsilon)\cdot\ln \frac{1+\epsilon}{\epsilon}$ as the number of machines converges to infinity. This is an exponential improvement over the greedy acceptance policy for small $\epsilon$. In the non-preemptive case, we present a deterministic algorithm on $m$ machines with a competitive ratio of $1+m\cdot \left(\frac{1+\epsilon}{\epsilon}\right){\frac{1}{m}}$. This matches the optimal bound of $2+\frac{1}{\epsilon}$ of the greedy acceptance policy for a single machine while it again guarantees an exponential improvement over the greedy acceptance policy for small $\epsilon$ and large $m$. In addition, we determine an almost tight lower bound that approaches $m\cdot \left(\frac{1}{\epsilon}\right){\frac{1}{m}}$ for large $m$ and small $\epsilon$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.