Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

DNN-based Acoustic-to-Articulatory Inversion using Ultrasound Tongue Imaging (1904.06083v1)

Published 12 Apr 2019 in cs.SD, eess.AS, and q-bio.TO

Abstract: Speech sounds are produced as the coordinated movement of the speaking organs. There are several available methods to model the relation of articulatory movements and the resulting speech signal. The reverse problem is often called as acoustic-to-articulatory inversion (AAI). In this paper we have implemented several different Deep Neural Networks (DNNs) to estimate the articulatory information from the acoustic signal. There are several previous works related to performing this task, but most of them are using ElectroMagnetic Articulography (EMA) for tracking the articulatory movement. Compared to EMA, Ultrasound Tongue Imaging (UTI) is a technique of higher cost-benefit if we take into account equipment cost, portability, safety and visualized structures. Seeing that, our goal is to train a DNN to obtain UT images, when using speech as input. We also test two approaches to represent the articulatory information: 1) the EigenTongue space and 2) the raw ultrasound image. As an objective quality measure for the reconstructed UT images, we use MSE, Structural Similarity Index (SSIM) and Complex-Wavelet SSIM (CW-SSIM). Our experimental results show that CW-SSIM is the most useful error measure in the UTI context. We tested three different system configurations: a) simple DNN composed of 2 hidden layers with 64x64 pixels of an UTI file as target; b) the same simple DNN but with ultrasound images projected to the EigenTongue space as the target; c) and a more complex DNN composed of 5 hidden layers with UTI files projected to the EigenTongue space. In a subjective experiment the subjects found that the neural networks with two hidden layers were more suitable for this inversion task.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.