Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A New Loss Function for CNN Classifier Based on Pre-defined Evenly-Distributed Class Centroids (1904.06008v2)

Published 12 Apr 2019 in cs.CV

Abstract: With the development of convolutional neural networks (CNNs) in recent years, the network structure has become more and more complex and varied, and has achieved very good results in pattern recognition, image classification, object detection and tracking. For CNNs used for image classification, in addition to the network structure, more and more research is now focusing on the improvement of the loss function, so as to enlarge the inter-class feature differences, and reduce the intra-class feature variations as soon as possible. Besides the traditional Softmax, typical loss functions include L-Softmax, AM-Softmax, ArcFace, and Center loss, etc. Based on the concept of predefined evenly-distributed class centroids (PEDCC) in CSAE network, this paper proposes a PEDCC-based loss function called PEDCC-Loss, which can make the inter-class distance maximal and intra-class distance small enough in hidden feature space. Multiple experiments on image classification and face recognition have proved that our method achieve the best recognition accuracy, and network training is stable and easy to converge. Code is available in https://github.com/ZLeopard/PEDCC-Loss

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube