Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Improved training of binary networks for human pose estimation and image recognition (1904.05868v1)

Published 11 Apr 2019 in cs.CV

Abstract: Big neural networks trained on large datasets have advanced the state-of-the-art for a large variety of challenging problems, improving performance by a large margin. However, under low memory and limited computational power constraints, the accuracy on the same problems drops considerable. In this paper, we propose a series of techniques that significantly improve the accuracy of binarized neural networks (i.e networks where both the features and the weights are binary). We evaluate the proposed improvements on two diverse tasks: fine-grained recognition (human pose estimation) and large-scale image recognition (ImageNet classification). Specifically, we introduce a series of novel methodological changes including: (a) more appropriate activation functions, (b) reverse-order initialization, (c) progressive quantization, and (d) network stacking and show that these additions improve existing state-of-the-art network binarization techniques, significantly. Additionally, for the first time, we also investigate the extent to which network binarization and knowledge distillation can be combined. When tested on the challenging MPII dataset, our method shows a performance improvement of more than 4% in absolute terms. Finally, we further validate our findings by applying the proposed techniques for large-scale object recognition on the Imagenet dataset, on which we report a reduction of error rate by 4%.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.