Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Safer Deep RL with Shallow MCTS: A Case Study in Pommerman (1904.05759v1)

Published 10 Apr 2019 in cs.LG, cs.AI, and cs.MA

Abstract: Safe reinforcement learning has many variants and it is still an open research problem. Here, we focus on how to use action guidance by means of a non-expert demonstrator to avoid catastrophic events in a domain with sparse, delayed, and deceptive rewards: the recently-proposed multi-agent benchmark of Pommerman. This domain is very challenging for reinforcement learning (RL) --- past work has shown that model-free RL algorithms fail to achieve significant learning. In this paper, we shed light into the reasons behind this failure by exemplifying and analyzing the high rate of catastrophic events (i.e., suicides) that happen under random exploration in this domain. While model-free random exploration is typically futile, we propose a new framework where even a non-expert simulated demonstrator, e.g., planning algorithms such as Monte Carlo tree search with small number of rollouts, can be integrated to asynchronous distributed deep reinforcement learning methods. Compared to vanilla deep RL algorithms, our proposed methods both learn faster and converge to better policies on a two-player mini version of the Pommerman game.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.