Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Restricted Isometry Property under High Correlations (1904.05510v2)

Published 11 Apr 2019 in cs.LG, cs.DS, and stat.ML

Abstract: Matrices satisfying the Restricted Isometry Property (RIP) play an important role in the areas of compressed sensing and statistical learning. RIP matrices with optimal parameters are mainly obtained via probabilistic arguments, as explicit constructions seem hard. It is therefore interesting to ask whether a fixed matrix can be incorporated into a construction of restricted isometries. In this paper, we construct a new broad ensemble of random matrices with dependent entries that satisfy the restricted isometry property. Our construction starts with a fixed (deterministic) matrix $X$ satisfying some simple stable rank condition, and we show that the matrix $XR$, where $R$ is a random matrix drawn from various popular probabilistic models (including, subgaussian, sparse, low-randomness, satisfying convex concentration property), satisfies the RIP with high probability. These theorems have various applications in signal recovery, random matrix theory, dimensionality reduction, etc. Additionally, motivated by an application for understanding the effectiveness of word vector embeddings popular in natural language processing and machine learning applications, we investigate the RIP of the matrix $XR{(l)}$ where $R{(l)}$ is formed by taking all possible (disregarding order) $l$-way entrywise products of the columns of a random matrix $R$.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube