Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Instance Segmentation based Semantic Matting for Compositing Applications (1904.05457v1)

Published 10 Apr 2019 in cs.CV

Abstract: Image compositing is a key step in film making and image editing that aims to segment a foreground object and combine it with a new background. Automatic image compositing can be done easily in a studio using chroma-keying when the background is pure blue or green. However, image compositing in natural scenes with complex backgrounds remains a tedious task, requiring experienced artists to hand-segment. In order to achieve automatic compositing in natural scenes, we propose a fully automated method that integrates instance segmentation and image matting processes to generate high-quality semantic mattes that can be used for image editing task. Our approach can be seen both as a refinement of existing instance segmentation algorithms and as a fully automated semantic image matting method. It extends automatic image compositing techniques such as chroma-keying to scenes with complex natural backgrounds without the need for any kind of user interaction. The output of our approach can be considered as both refined instance segmentations and alpha mattes with semantic meanings. We provide experimental results which show improved performance results as compared to existing approaches.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.