Papers
Topics
Authors
Recent
2000 character limit reached

Deep Neural Networks Ensemble for Detecting Medication Mentions in Tweets (1904.05308v2)

Published 10 Apr 2019 in cs.CL, cs.IR, and cs.LG

Abstract: Objective: After years of research, Twitter posts are now recognized as an important source of patient-generated data, providing unique insights into population health. A fundamental step to incorporating Twitter data in pharmacoepidemiological research is to automatically recognize medication mentions in tweets. Given that lexical searches for medication names may fail due to misspellings or ambiguity with common words, we propose a more advanced method to recognize them. Methods: We present Kusuri, an Ensemble Learning classifier, able to identify tweets mentioning drug products and dietary supplements. Kusuri ("medication" in Japanese) is composed of two modules. First, four different classifiers (lexicon-based, spelling-variant-based, pattern-based and one based on a weakly-trained neural network) are applied in parallel to discover tweets potentially containing medication names. Second, an ensemble of deep neural networks encoding morphological, semantical and long-range dependencies of important words in the tweets discovered is used to make the final decision. Results: On a balanced (50-50) corpus of 15,005 tweets, Kusuri demonstrated performances close to human annotators with 93.7% F1-score, the best score achieved thus far on this corpus. On a corpus made of all tweets posted by 113 Twitter users (98,959 tweets, with only 0.26% mentioning medications), Kusuri obtained 76.3% F1-score. There is not a prior drug extraction system that compares running on such an extremely unbalanced dataset. Conclusion: The system identifies tweets mentioning drug names with performance high enough to ensure its usefulness and ready to be integrated in larger natural language processing systems.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.