Papers
Topics
Authors
Recent
2000 character limit reached

Planar graphs have bounded nonrepetitive chromatic number (1904.05269v4)

Published 10 Apr 2019 in math.CO and cs.DM

Abstract: A colouring of a graph is "nonrepetitive" if for every path of even order, the sequence of colours on the first half of the path is different from the sequence of colours on the second half. We show that planar graphs have nonrepetitive colourings with a bounded number of colours, thus proving a conjecture of Alon, Grytczuk, Haluszczak and Riordan (2002). We also generalise this result for graphs of bounded Euler genus, graphs excluding a fixed minor, and graphs excluding a fixed topological minor.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.