Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

From Semi-supervised to Almost-unsupervised Speech Recognition with Very-low Resource by Jointly Learning Phonetic Structures from Audio and Text Embeddings (1904.05078v1)

Published 10 Apr 2019 in cs.CL, cs.SD, and eess.AS

Abstract: Producing a large amount of annotated speech data for training ASR systems remains difficult for more than 95% of languages all over the world which are low-resourced. However, we note human babies start to learn the language by the sounds (or phonetic structures) of a small number of exemplar words, and "generalize" such knowledge to other words without hearing a large amount of data. We initiate some preliminary work in this direction. Audio Word2Vec is used to learn the phonetic structures from spoken words (signal segments), while another autoencoder is used to learn the phonetic structures from text words. The relationships among the above two can be learned jointly, or separately after the above two are well trained. This relationship can be used in speech recognition with very low resource. In the initial experiments on the TIMIT dataset, only 2.1 hours of speech data (in which 2500 spoken words were annotated and the rest unlabeled) gave a word error rate of 44.6%, and this number can be reduced to 34.2% if 4.1 hr of speech data (in which 20000 spoken words were annotated) were given. These results are not satisfactory, but a good starting point.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.