Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning Question Answering (1904.04969v1)

Published 10 Apr 2019 in cs.CL, cs.AI, and cs.LG

Abstract: Multi-hop reasoning question answering requires deep comprehension of relationships between various documents and queries. We propose a Bi-directional Attention Entity Graph Convolutional Network (BAG), leveraging relationships between nodes in an entity graph and attention information between a query and the entity graph, to solve this task. Graph convolutional networks are used to obtain a relation-aware representation of nodes for entity graphs built from documents with multi-level features. Bidirectional attention is then applied on graphs and queries to generate a query-aware nodes representation, which will be used for the final prediction. Experimental evaluation shows BAG achieves state-of-the-art accuracy performance on the QAngaroo WIKIHOP dataset.

Citations (77)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.