Lower Bounds for Oblivious Near-Neighbor Search (1904.04828v1)
Abstract: We prove an $\Omega(d \lg n/ (\lg\lg n)2)$ lower bound on the dynamic cell-probe complexity of statistically $\mathit{oblivious}$ approximate-near-neighbor search ($\mathsf{ANN}$) over the $d$-dimensional Hamming cube. For the natural setting of $d = \Theta(\log n)$, our result implies an $\tilde{\Omega}(\lg2 n)$ lower bound, which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for $\mathsf{ANN}$. This is the first super-logarithmic $\mathit{unconditional}$ lower bound for $\mathsf{ANN}$ against general (non black-box) data structures. We also show that any oblivious $\mathit{static}$ data structure for decomposable search problems (like $\mathsf{ANN}$) can be obliviously dynamized with $O(\log n)$ overhead in update and query time, strengthening a classic result of Bentley and Saxe (Algorithmica, 1980).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.