Papers
Topics
Authors
Recent
2000 character limit reached

Lower Bounds for Oblivious Near-Neighbor Search (1904.04828v1)

Published 9 Apr 2019 in cs.DS and cs.CR

Abstract: We prove an $\Omega(d \lg n/ (\lg\lg n)2)$ lower bound on the dynamic cell-probe complexity of statistically $\mathit{oblivious}$ approximate-near-neighbor search ($\mathsf{ANN}$) over the $d$-dimensional Hamming cube. For the natural setting of $d = \Theta(\log n)$, our result implies an $\tilde{\Omega}(\lg2 n)$ lower bound, which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for $\mathsf{ANN}$. This is the first super-logarithmic $\mathit{unconditional}$ lower bound for $\mathsf{ANN}$ against general (non black-box) data structures. We also show that any oblivious $\mathit{static}$ data structure for decomposable search problems (like $\mathsf{ANN}$) can be obliviously dynamized with $O(\log n)$ overhead in update and query time, strengthening a classic result of Bentley and Saxe (Algorithmica, 1980).

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.