Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lower Bounds for Oblivious Near-Neighbor Search (1904.04828v1)

Published 9 Apr 2019 in cs.DS and cs.CR

Abstract: We prove an $\Omega(d \lg n/ (\lg\lg n)2)$ lower bound on the dynamic cell-probe complexity of statistically $\mathit{oblivious}$ approximate-near-neighbor search ($\mathsf{ANN}$) over the $d$-dimensional Hamming cube. For the natural setting of $d = \Theta(\log n)$, our result implies an $\tilde{\Omega}(\lg2 n)$ lower bound, which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for $\mathsf{ANN}$. This is the first super-logarithmic $\mathit{unconditional}$ lower bound for $\mathsf{ANN}$ against general (non black-box) data structures. We also show that any oblivious $\mathit{static}$ data structure for decomposable search problems (like $\mathsf{ANN}$) can be obliviously dynamized with $O(\log n)$ overhead in update and query time, strengthening a classic result of Bentley and Saxe (Algorithmica, 1980).

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.