Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Lower Bounds for Oblivious Near-Neighbor Search (1904.04828v1)

Published 9 Apr 2019 in cs.DS and cs.CR

Abstract: We prove an $\Omega(d \lg n/ (\lg\lg n)2)$ lower bound on the dynamic cell-probe complexity of statistically $\mathit{oblivious}$ approximate-near-neighbor search ($\mathsf{ANN}$) over the $d$-dimensional Hamming cube. For the natural setting of $d = \Theta(\log n)$, our result implies an $\tilde{\Omega}(\lg2 n)$ lower bound, which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for $\mathsf{ANN}$. This is the first super-logarithmic $\mathit{unconditional}$ lower bound for $\mathsf{ANN}$ against general (non black-box) data structures. We also show that any oblivious $\mathit{static}$ data structure for decomposable search problems (like $\mathsf{ANN}$) can be obliviously dynamized with $O(\log n)$ overhead in update and query time, strengthening a classic result of Bentley and Saxe (Algorithmica, 1980).

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube