Papers
Topics
Authors
Recent
2000 character limit reached

Multimodal Style Transfer via Graph Cuts (1904.04443v6)

Published 9 Apr 2019 in cs.CV

Abstract: An assumption widely used in recent neural style transfer methods is that image styles can be described by global statics of deep features like Gram or covariance matrices. Alternative approaches have represented styles by decomposing them into local pixel or neural patches. Despite the recent progress, most existing methods treat the semantic patterns of style image uniformly, resulting unpleasing results on complex styles. In this paper, we introduce a more flexible and general universal style transfer technique: multimodal style transfer (MST). MST explicitly considers the matching of semantic patterns in content and style images. Specifically, the style image features are clustered into sub-style components, which are matched with local content features under a graph cut formulation. A reconstruction network is trained to transfer each sub-style and render the final stylized result. We also generalize MST to improve some existing methods. Extensive experiments demonstrate the superior effectiveness, robustness, and flexibility of MST.

Citations (78)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.