Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Audio Classification of Bit-Representation Waveform (1904.04364v2)

Published 8 Apr 2019 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: This study investigated the waveform representation for audio signal classification. Recently, many studies on audio waveform classification such as acoustic event detection and music genre classification have been published. Most studies on audio waveform classification have proposed the use of a deep learning (neural network) framework. Generally, a frequency analysis method such as Fourier transform is applied to extract the frequency or spectral information from the input audio waveform before inputting the raw audio waveform into the neural network. In contrast to these previous studies, in this paper, we propose a novel waveform representation method, in which audio waveforms are represented as a bit sequence, for audio classification. In our experiment, we compare the proposed bit representation waveform, which is directly given to a neural network, to other representations of audio waveforms such as a raw audio waveform and a power spectrum with two classification tasks: one is an acoustic event classification task and the other is a sound/music classification task. The experimental results showed that the bit representation waveform achieved the best classification performance for both the tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Masaki Okawa (1 paper)
  2. Takuya Saito (24 papers)
  3. Naoki Sawada (2 papers)
  4. Hiromitsu Nishizaki (13 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.