Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Relational Reasoning Network (RRN) for Anatomical Landmarking (1904.04354v2)

Published 8 Apr 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Purpose: We perform anatomical landmarking for craniomaxillofacial (CMF) bones without explicitly segmenting them. Towards this, we propose a new simple yet efficient deep network architecture, called \textit{relational reasoning network (RRN)}, to accurately learn the local and the global relations among the landmarks in CMF bones; specifically, mandible, maxilla, and nasal bones. Approach: The proposed RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-block units. For a given few landmarks as input, RRN treats the landmarking process similar to a data imputation problem where predicted landmarks are considered missing. Results: We applied RRN to cone beam computed tomography scans obtained from 250 patients. With a 4-fold cross validation technique, we obtained an average root mean squared error of less than 2 mm per landmark. Our proposed RRN has revealed unique relationships among the landmarks that help us in inferring several \textit{reasoning} about informativeness of the landmark points. The proposed system identifies the missing landmark locations accurately even when severe pathology or deformation are present in the bones. Conclusions: Accurately identifying anatomical landmarks is a crucial step in deformation analysis and surgical planning for CMF surgeries. Achieving this goal without the need for explicit bone segmentation addresses a major limitation of segmentation based approaches, where segmentation failure (as often the case in bones with severe pathology or deformation) could easily lead to incorrect landmarking. To the best of our knowledge, this is the first of its kind algorithm finding anatomical relations of the objects using deep learning.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.