$\mathcal{G}$-softmax: Improving Intra-class Compactness and Inter-class Separability of Features (1904.04317v2)
Abstract: Intra-class compactness and inter-class separability are crucial indicators to measure the effectiveness of a model to produce discriminative features, where intra-class compactness indicates how close the features with the same label are to each other and inter-class separability indicates how far away the features with different labels are. In this work, we investigate intra-class compactness and inter-class separability of features learned by convolutional networks and propose a Gaussian-based softmax ($\mathcal{G}$-softmax) function that can effectively improve intra-class compactness and inter-class separability. The proposed function is simple to implement and can easily replace the softmax function. We evaluate the proposed $\mathcal{G}$-softmax function on classification datasets (i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet) and on multi-label classification datasets (i.e., MS COCO and NUS-WIDE). The experimental results show that the proposed $\mathcal{G}$-softmax function improves the state-of-the-art models across all evaluated datasets. In addition, analysis of the intra-class compactness and inter-class separability demonstrates the advantages of the proposed function over the softmax function, which is consistent with the performance improvement. More importantly, we observe that high intra-class compactness and inter-class separability are linearly correlated to average precision on MS COCO and NUS-WIDE. This implies that improvement of intra-class compactness and inter-class separability would lead to improvement of average precision.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.