On the number of non-G-equivalent minimal abelian codes (1904.04077v3)
Abstract: Let $G$ be a finite abelian group. Ferraz, Guerreiro and Polcino Milies prove that the number of $G$-equivalence classes of minimal abelian codes is equal to the number of $G$-isomorphism classes of subgroups for which corresponding quotients are cyclic. In this article, we prove that the notion of $G$-isomorphism is equivalent to the notion of isomorphism on the set of all subgroups $H$ of $G$ with the property that $G/H$ is cyclic. As an application, we calculate the number of non-$G$-equivalent minimal abelian codes for some specific family of abelian groups. We also prove that the number of non-$G$-equivalent minimal abelian codes is equal to number of divisors of the exponent of $G$ if and only if for each prime $p$ dividing the order of $G$, the Sylow $p$-subgroups of $G$ are homocyclic.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.