Papers
Topics
Authors
Recent
2000 character limit reached

On the number of non-G-equivalent minimal abelian codes (1904.04077v3)

Published 4 Apr 2019 in math.GR, cs.IT, and math.IT

Abstract: Let $G$ be a finite abelian group. Ferraz, Guerreiro and Polcino Milies prove that the number of $G$-equivalence classes of minimal abelian codes is equal to the number of $G$-isomorphism classes of subgroups for which corresponding quotients are cyclic. In this article, we prove that the notion of $G$-isomorphism is equivalent to the notion of isomorphism on the set of all subgroups $H$ of $G$ with the property that $G/H$ is cyclic. As an application, we calculate the number of non-$G$-equivalent minimal abelian codes for some specific family of abelian groups. We also prove that the number of non-$G$-equivalent minimal abelian codes is equal to number of divisors of the exponent of $G$ if and only if for each prime $p$ dividing the order of $G$, the Sylow $p$-subgroups of $G$ are homocyclic.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.