Papers
Topics
Authors
Recent
2000 character limit reached

Import2vec - Learning Embeddings for Software Libraries (1904.03990v1)

Published 27 Mar 2019 in cs.SE, cs.IR, cs.LG, and stat.ML

Abstract: We consider the problem of developing suitable learning representations (embeddings) for library packages that capture semantic similarity among libraries. Such representations are known to improve the performance of downstream learning tasks (e.g. classification) or applications such as contextual search and analogical reasoning. We apply word embedding techniques from NLP to train embeddings for library packages ("library vectors"). Library vectors represent libraries by similar context of use as determined by import statements present in source code. Experimental results obtained from training such embeddings on three large open source software corpora reveals that library vectors capture semantically meaningful relationships among software libraries, such as the relationship between frameworks and their plug-ins and libraries commonly used together within ecosystems such as big data infrastructure projects (in Java), front-end and back-end web development frameworks (in JavaScript) and data science toolkits (in Python).

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.