Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Concurrent Stateful Stream Processing on Multicore Processors (Technical Report) (1904.03800v4)

Published 8 Apr 2019 in cs.DB

Abstract: Recent data stream processing systems (DSPSs) can achieve excellent performance when processing large volumes of data under tight latency constraints. However, they sacrifice support for concurrent state access that eases the burden of developing stateful stream applications. Recently, some have proposed managing concurrent state access during stream processing by modeling state accesses as transactions. However, these are realized with locks involving serious contention overhead. Their coarse-grained processing paradigm further magnifies contention issues and tends to poorly utilize modern multicore architectures. This paper introduces TStream , a novel DSPS supporting efficient concurrent state access on multicore processors. Transactional semantics is employed like previous work, but scalability is greatly improved due to two novel designs: 1) dual-mode scheduling, which exposes more parallelism opportunities, 2) dynamic restructuring execution, which aggressively exploits the parallelism opportunities from dual-mode scheduling without centralized lock contentions. To validate our proposal, we evaluate TStream with a benchmark of four applications on a modern multicore machine. The experimental results show that 1) TStream achieves up to 4.8 times higher throughput with similar processing latency compared to the state-of-the-art and 2) unlike prior solutions, TStream is highly tolerant of varying application workloads such as key skewness and multi-partition state accesses.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.