Long-Term Vehicle Localization by Recursive Knowledge Distillation (1904.03551v1)
Abstract: Most of the current state-of-the-art frameworks for cross-season visual place recognition (CS-VPR) focus on domain adaptation (DA) to a single specific season. From the viewpoint of long-term CS-VPR, such frameworks do not scale well to sequential multiple domains (e.g., spring - summer - autumn - winter - ... ). The goal of this study is to develop a novel long-term ensemble learning (LEL) framework that allows for a constant cost retraining in long-term sequential-multi-domain CS-VPR (SMD-VPR), which only requires the memorization of a small constant number of deep convolutional neural networks (CNNs) and can retrain the CNN ensemble of every season at a small constant time/space cost. We frame our task as the multi-teacher multi-student knowledge distillation (MTMS-KD), which recursively compresses all the previous season's knowledge into a current CNN ensemble. We further address the issue of teacher-student-assignment (TSA) to achieve a good generalization/specialization tradeoff. Experimental results on SMD-VPR tasks validate the efficacy of the proposed approach.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.