Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Load-Balanced Sparse MTTKRP on GPUs (1904.03329v1)

Published 6 Apr 2019 in cs.DC

Abstract: Sparse matricized tensor times Khatri-Rao product (MTTKRP) is one of the most computationally expensive kernels in sparse tensor computations. This work focuses on optimizing the MTTKRP operation on GPUs, addressing both performance and storage requirements. We begin by identifying the performance bottlenecks in directly extending the state-of-the-art CSF (compressed sparse fiber) format from CPUs to GPUs. A significant challenge with GPUs compared to multicore CPUs is that of utilizing the much greater degree of parallelism in a load-balanced fashion for irregular computations like sparse MTTKRP. To address this issue, we develop a new storage-efficient representation for tensors that enables high-performance, load-balanced execution of MTTKRP on GPUs. A GPU implementation of sparse MTTKRP using the new sparse tensor representation is shown to outperform all currently known parallel sparse CPU and GPU MTTKRP implementations.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.