Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

360 Panorama Synthesis from a Sparse Set of Images with Unknown Field of View (1904.03326v4)

Published 6 Apr 2019 in cs.CV

Abstract: 360 images represent scenes captured in all possible viewing directions and enable viewers to navigate freely around the scene thereby providing an immersive experience. Conversely, conventional images represent scenes in a single viewing direction with a small or limited field of view (FOV). As a result, only certain parts of the scenes are observed, and valuable information about the surroundings is lost. In this paper, a learning-based approach that reconstructs the scene in 360 x 180 from a sparse set of conventional images (typically 4 images) is proposed. The proposed approach first estimates the FOV of input images relative to the panorama. The estimated FOV is then used as the prior for synthesizing a high-resolution 360 panoramic output. The proposed method overcomes the difficulty of learning-based approach in synthesizing high resolution images (up to 512$\times$1024). Experimental results demonstrate that the proposed method produces 360 panorama with reasonable quality. Results also show that the proposed method outperforms the alternative method and can be generalized for non-panoramic scenes and images captured by a smartphone camera.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.