Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

ReNets: Toward Statically Optimal Self-Adjusting Networks (1904.03263v1)

Published 5 Apr 2019 in cs.NI

Abstract: This paper studies the design of self-adjusting networks whose topology dynamically adapts to the workload, in an online and demand-aware manner. This problem is motivated by emerging optical technologies which allow to reconfigure the datacenter topology at runtime. Our main contribution is ReNet, a self-adjusting network which maintains a balance between the benefits and costs of reconfigurations. In particular, we show that ReNets are statically optimal for arbitrary sparse communication demands, i.e., perform at least as good as any fixed demand-aware network designed with a perfect knowledge of the future demand. Furthermore, ReNets provide compact and local routing, by leveraging ideas from self-adjusting datastructures.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.