Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Comparative Analysis of Automatic Skin Lesion Segmentation with Two Different Implementations (1904.03075v1)

Published 5 Apr 2019 in cs.CV

Abstract: Lesion segmentation from the surrounding skin is the first task for developing automatic Computer-Aided Diagnosis of skin cancer. Variant features of lesion like uneven distribution of color, irregular shape, border and texture make this task challenging. The contribution of this paper is to present and compare two different approaches to skin lesion segmentation. The first approach uses watershed, while the second approach uses mean-shift. Pre-processing steps were performed in both approaches for removing hair and dark borders of microscopic images. The Evaluation of the proposed approaches was performed using Jaccard Index (Intersection over Union or IoU). An additional contribution of this paper is to present pipelines for performing pre-processing and segmentation applying existing segmentation and morphological algorithms which led to promising results. On average, the first approach showed better performance than the second one with average Jaccard Index over 200 ISIC-2017 challenge images are 89.16% and 76.94% respectively.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.