Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Temporal similarity metrics for latent network reconstruction: The role of time-lag decay (1904.02413v1)

Published 4 Apr 2019 in cs.SI and physics.data-an

Abstract: When investigating the spreading of a piece of information or the diffusion of an innovation, we often lack information on the underlying propagation network. Reconstructing the hidden propagation paths based on the observed diffusion process is a challenging problem which has recently attracted attention from diverse research fields. To address this reconstruction problem, based on static similarity metrics commonly used in the link prediction literature, we introduce new node-node temporal similarity metrics. The new metrics take as input the time-series of multiple independent spreading processes, based on the hypothesis that two nodes are more likely to be connected if they were often infected at similar points in time. This hypothesis is implemented by introducing a time-lag function which penalizes distant infection times. We find that the choice of this time-lag strongly affects the metrics' reconstruction accuracy, depending on the network's clustering coefficient and we provide an extensive comparative analysis of static and temporal similarity metrics for network reconstruction. Our findings shed new light on the notion of similarity between pairs of nodes in complex networks.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.