Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finite-Sample Concentration of the Multinomial in Relative Entropy (1904.02291v4)

Published 4 Apr 2019 in cs.IT, math.IT, math.PR, math.ST, and stat.TH

Abstract: We show that the moment generating function of the Kullback-Leibler divergence (relative entropy) between the empirical distribution of $n$ independent samples from a distribution $P$ over a finite alphabet of size $k$ (i.e. a multinomial distribution) and $P$ itself is no more than that of a gamma distribution with shape $k - 1$ and rate $n$. The resulting exponential concentration inequality becomes meaningful (less than 1) when the divergence $\varepsilon$ is larger than $(k-1)/n$, whereas the standard method of types bound requires $\varepsilon > \frac{1}{n} \cdot \log{\binom{n+k-1}{k-1}} \geq (k-1)/n \cdot \log(1 + n/(k-1))$, thus saving a factor of order $\log(n/k)$ in the standard regime of parameters where $n\gg k$. As a consequence, we also obtain finite-sample bounds on all the moments of the empirical divergence (equivalently, the discrete likelihood-ratio statistic), which are within constant factors (depending on the moment) of their asymptotic values. Our proof proceeds via a simple reduction to the case $k = 2$ of a binary alphabet (i.e. a binomial distribution), and has the property that improvements in the case of $k = 2$ directly translate to improvements for general $k$. In particular, we conjecture a bound on the binomial moment generating function that would almost close the quadratic gap between our finite-sample bound and the asymptotic moment generating function bound from Wilks' theorem (which does not hold for finite samples).

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube