Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sublinear quantum algorithms for training linear and kernel-based classifiers (1904.02276v1)

Published 4 Apr 2019 in quant-ph, cs.DS, and cs.LG

Abstract: We investigate quantum algorithms for classification, a fundamental problem in machine learning, with provable guarantees. Given $n$ $d$-dimensional data points, the state-of-the-art (and optimal) classical algorithm for training classifiers with constant margin runs in $\tilde{O}(n+d)$ time. We design sublinear quantum algorithms for the same task running in $\tilde{O}(\sqrt{n} +\sqrt{d})$ time, a quadratic improvement in both $n$ and $d$. Moreover, our algorithms use the standard quantization of the classical input and generate the same classical output, suggesting minimal overheads when used as subroutines for end-to-end applications. We also demonstrate a tight lower bound (up to poly-log factors) and discuss the possibility of implementation on near-term quantum machines. As a side result, we also give sublinear quantum algorithms for approximating the equilibria of $n$-dimensional matrix zero-sum games with optimal complexity $\tilde{\Theta}(\sqrt{n})$.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.