Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Monte Carlo algorithms are very effective in finding the largest independent set in sparse random graphs (1904.02231v1)

Published 3 Apr 2019 in cond-mat.dis-nn, cond-mat.stat-mech, cs.CC, and cs.DS

Abstract: The effectiveness of stochastic algorithms based on Monte Carlo dynamics in solving hard optimization problems is mostly unknown. Beyond the basic statement that at a dynamical phase transition the ergodicity breaks and a Monte Carlo dynamics cannot sample correctly the probability distribution in times linear in the system size, there are almost no predictions nor intuitions on the behavior of this class of stochastic dynamics. The situation is particularly intricate because, when using a Monte Carlo based algorithm as an optimization algorithm, one is usually interested in the out of equilibrium behavior which is very hard to analyse. Here we focus on the use of Parallel Tempering in the search for the largest independent set in a sparse random graph, showing that it can find solutions well beyond the dynamical threshold. Comparison with state-of-the-art message passing algorithms reveals that parallel tempering is definitely the algorithm performing best, although a theory explaining its behavior is still lacking.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.