Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Shared Encoding Representation for End-to-End Speech Recognition Models (1904.02147v1)

Published 31 Mar 2019 in eess.AS, cs.LG, and cs.SD

Abstract: In this work, we learn a shared encoding representation for a multi-task neural network model optimized with connectionist temporal classification (CTC) and conventional framewise cross-entropy training criteria. Our experiments show that the multi-task training not only tackles the complexity of optimizing CTC models such as acoustic-to-word but also results in significant improvement compared to the plain-task training with an optimal setup. Furthermore, we propose to use the encoding representation learned by the multi-task network to initialize the encoder of attention-based models. Thereby, we train a deep attention-based end-to-end model with 10 long short-term memory (LSTM) layers of encoder which produces 12.2\% and 22.6\% word-error-rate on Switchboard and CallHome subsets of the Hub5 2000 evaluation.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.