Papers
Topics
Authors
Recent
Search
2000 character limit reached

Jointly Extracting and Compressing Documents with Summary State Representations

Published 3 Apr 2019 in cs.IR, cs.CL, and cs.LG | (1904.02020v2)

Abstract: We present a new neural model for text summarization that first extracts sentences from a document and then compresses them. The proposed model offers a balance that sidesteps the difficulties in abstractive methods while generating more concise summaries than extractive methods. In addition, our model dynamically determines the length of the output summary based on the gold summaries it observes during training and does not require length constraints typical to extractive summarization. The model achieves state-of-the-art results on the CNN/DailyMail and Newsroom datasets, improving over current extractive and abstractive methods. Human evaluations demonstrate that our model generates concise and informative summaries. We also make available a new dataset of oracle compressive summaries derived automatically from the CNN/DailyMail reference summaries.

Citations (52)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.