Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Adversarial Generative Flow for Controllable Image Synthesis (1904.01782v1)

Published 3 Apr 2019 in cs.CV

Abstract: Flow-based generative models show great potential in image synthesis due to its reversible pipeline and exact log-likelihood target, yet it suffers from weak ability for conditional image synthesis, especially for multi-label or unaware conditions. This is because the potential distribution of image conditions is hard to measure precisely from its latent variable $z$. In this paper, based on modeling a joint probabilistic density of an image and its conditions, we propose a novel flow-based generative model named conditional adversarial generative flow (CAGlow). Instead of disentangling attributes from latent space, we blaze a new trail for learning an encoder to estimate the mapping from condition space to latent space in an adversarial manner. Given a specific condition $c$, CAGlow can encode it to a sampled $z$, and then enable robust conditional image synthesis in complex situations like combining person identity with multiple attributes. The proposed CAGlow can be implemented in both supervised and unsupervised manners, thus can synthesize images with conditional information like categories, attributes, and even some unknown properties. Extensive experiments show that CAGlow ensures the independence of different conditions and outperforms regular Glow to a significant extent.

Citations (43)

Summary

We haven't generated a summary for this paper yet.