Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards annotation-efficient segmentation via image-to-image translation (1904.01636v4)

Published 2 Apr 2019 in cs.CV

Abstract: Often in medical imaging, it is prohibitively challenging to produce enough boundary annotations to train deep neural networks for accurate tumor segmentation. We propose the use of weak labels about whether an image presents tumor or whether it is absent to extend training over images that lack these annotations. Specifically, we propose a semi-supervised framework that employs unpaired image-to-image translation between two domains, presence vs. absence of cancer, as the unsupervised objective. We conjecture that translation helps segmentation -- both require the target to be separated from the background. We encode images into two codes: one that is common to both domains and one that is unique to the presence domain. Decoding from the common code yields healthy images; decoding with the addition of the unique code produces a residual change to this image that adds cancer. Translation proceeds from presence to absence and vice versa. In the first case, the tumor is re-added to the image and we successfully exploit the residual decoder to also perform segmentation. In the second case, unique codes are sampled, producing a distribution of possible tumors. To validate the method, we created challenging synthetic tasks and tumor segmentation datasets from public BRATS (brain, MRI) and LitS (liver, CT) datasets. We show a clear improvement (0.83 Dice on brain, 0.74 on liver) over baseline semi-supervised training with autoencoding (0.73, 0.66) and a mean teacher approach (0.75, 0.69), demonstrating the ability to generalize from smaller distributions of annotated samples.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com