Papers
Topics
Authors
Recent
2000 character limit reached

Simplified inpproximability of hypergraph coloring via t-agreeing families (1904.01163v1)

Published 2 Apr 2019 in cs.CC, cs.DM, and math.CO

Abstract: We reprove the results on the hardness of approximating hypergraph coloring using a different technique based on bounds on the size of extremal $t$-agreeing families of $[q]n$. Specifically, using theorems of Frankl-Tokushige [FT99], Ahlswede-Khachatrian [AK98] and Frankl [F76] on the size of such families, we give simple and unified proofs of quasi NP-hardness of the following problems: $\bullet$ coloring a $3$ colorable $4$-uniform hypergraph with $(\log n)\delta$ many colors $\bullet$ coloring a $3$ colorable $3$-uniform hypergraph with $\tilde{O}(\sqrt{\log \log n})$ many colors $\bullet$ coloring a $2$ colorable $6$-uniform hypergraph with $(\log n)\delta$ many colors $\bullet$ coloring a $2$ colorable $4$-uniform hypergraph with $\tilde{O}(\sqrt{\log \log n})$ many colors where $n$ is the number of vertices of the hypergraph and $\delta>0$ is a universal constant.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.