Papers
Topics
Authors
Recent
2000 character limit reached

Learning Mixtures of Smooth Product Distributions: Identifiability and Algorithm (1904.01156v1)

Published 2 Apr 2019 in eess.SP, cs.LG, and stat.ML

Abstract: We study the problem of learning a mixture model of non-parametric product distributions. The problem of learning a mixture model is that of finding the component distributions along with the mixing weights using observed samples generated from the mixture. The problem is well-studied in the parametric setting, i.e., when the component distributions are members of a parametric family -- such as Gaussian distributions. In this work, we focus on multivariate mixtures of non-parametric product distributions and propose a two-stage approach which recovers the component distributions of the mixture under a smoothness condition. Our approach builds upon the identifiability properties of the canonical polyadic (low-rank) decomposition of tensors, in tandem with Fourier and Shannon-Nyquist sampling staples from signal processing. We demonstrate the effectiveness of the approach on synthetic and real datasets.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.