Papers
Topics
Authors
Recent
Search
2000 character limit reached

Random walks and forbidden minors II: A $\text{poly}(d\varepsilon^{-1})$-query tester for minor-closed properties of bounded-degree graphs

Published 1 Apr 2019 in cs.DM and math.CO | (1904.01055v1)

Abstract: Let $G$ be a graph with $n$ vertices and maximum degree $d$. Fix some minor-closed property $\mathcal{P}$ (such as planarity). We say that $G$ is $\varepsilon$-far from $\mathcal{P}$ if one has to remove $\varepsilon dn$ edges to make it have $\mathcal{P}$. The problem of property testing $\mathcal{P}$ was introduced in the seminal work of Benjamini-Schramm-Shapira (STOC 2008) that gave a tester with query complexity triply exponential in $\varepsilon{-1}$. Levi-Ron (TALG 2015) have given the best tester to date, with a quasipolynomial (in $\varepsilon{-1}$) query complexity. It is an open problem to get property testers whose query complexity is $\text{poly}(d\varepsilon{-1})$, even for planarity. In this paper, we resolve this open question. For any minor-closed property, we give a tester with query complexity $d\cdot \text{poly}(\varepsilon{-1})$. The previous line of work on (independent of $n$, two-sided) testers is primarily combinatorial. Our work, on the other hand, employs techniques from spectral graph theory. This paper is a continuation of recent work of the authors (FOCS 2018) analyzing random walk algorithms that find forbidden minors.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.