Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning to Stop in Structured Prediction for Neural Machine Translation (1904.01032v3)

Published 1 Apr 2019 in cs.CL

Abstract: Beam search optimization resolves many issues in neural machine translation. However, this method lacks principled stopping criteria and does not learn how to stop during training, and the model naturally prefers the longer hypotheses during the testing time in practice since they use the raw score instead of the probability-based score. We propose a novel ranking method which enables an optimal beam search stopping criteria. We further introduce a structured prediction loss function which penalizes suboptimal finished candidates produced by beam search during training. Experiments of neural machine translation on both synthetic data and real languages (German-to-English and Chinese-to-English) demonstrate our proposed methods lead to better length and BLEU score.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.