Papers
Topics
Authors
Recent
2000 character limit reached

A Novel Malware Detection System Based On Machine Learning and Binary Visualization (1904.00859v1)

Published 1 Apr 2019 in cs.CR

Abstract: The continued evolution and diversity of malware constitutes a major threat in modern systems. It is well proven that security defenses currently available are ineffective to mitigate the skills and imagination of cyber-criminals necessitating the development of novel solutions. Deep learning algorithms and AI are rapidly evolving with remarkable results in many application areas. Following the advances of AI and recognizing the need for efficient malware detection methods, this paper presents a new approach for malware detection based on binary visualization and self-organizing incremental neural networks. The proposed method's performance in detecting malicious payloads in various file types was investigated and the experimental results showed that a detection accuracy of 91.7% and 94.1% was achieved for ransomware in .pdf and .doc files respectively. With respect to other formats of malicious code and other file types, including binaries, the proposed method behaved well with an incremental detection rate that allows efficiently detecting unknown malware at real-time.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.