Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

k-Same-Siamese-GAN: k-Same Algorithm with Generative Adversarial Network for Facial Image De-identification with Hyperparameter Tuning and Mixed Precision Training (1904.00816v2)

Published 27 Mar 2019 in cs.CV, cs.LG, and stat.ML

Abstract: For a data holder, such as a hospital or a government entity, who has a privately held collection of personal data, in which the revealing and/or processing of the personal identifiable data is restricted and prohibited by law. Then, "how can we ensure the data holder does conceal the identity of each individual in the imagery of personal data while still preserving certain useful aspects of the data after de-identification?" becomes a challenge issue. In this work, we propose an approach towards high-resolution facial image de-identification, called k-Same-Siamese-GAN, which leverages the k-Same-Anonymity mechanism, the Generative Adversarial Network, and the hyperparameter tuning methods. Moreover, to speed up model training and reduce memory consumption, the mixed precision training technique is also applied to make kSS-GAN provide guarantees regarding privacy protection on close-form identities and be trained much more efficiently as well. Finally, to validate its applicability, the proposed work has been applied to actual datasets - RafD and CelebA for performance testing. Besides protecting privacy of high-resolution facial images, the proposed system is also justified for its ability in automating parameter tuning and breaking through the limitation of the number of adjustable parameters.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube