Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Convolutional Neural Network for Language-Agnostic Source Code Summarization (1904.00805v1)

Published 29 Mar 2019 in cs.CL, cs.LG, and stat.ML

Abstract: Descriptive comments play a crucial role in the software engineering process. They decrease development time, enable better bug detection, and facilitate the reuse of previously written code. However, comments are commonly the last of a software developer's priorities and are thus either insufficient or missing entirely. Automatic source code summarization may therefore have the ability to significantly improve the software development process. We introduce a novel encoder-decoder model that summarizes source code, effectively writing a comment to describe the code's functionality. We make two primary innovations beyond current source code summarization models. First, our encoder is fully language-agnostic and requires no complex input preprocessing. Second, our decoder has an open vocabulary, enabling it to predict any word, even ones not seen in training. We demonstrate results comparable to state-of-the-art methods on a single-language data set and provide the first results on a data set consisting of multiple programming languages.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube