Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Affect in Tweets Using Experts Model (1904.00762v1)

Published 20 Mar 2019 in cs.IR, cs.CL, cs.LG, and stat.ML

Abstract: Estimating the intensity of emotion has gained significance as modern textual inputs in potential applications like social media, e-retail markets, psychology, advertisements etc., carry a lot of emotions, feelings, expressions along with its meaning. However, the approaches of traditional sentiment analysis primarily focuses on classifying the sentiment in general (positive or negative) or at an aspect level(very positive, low negative, etc.) and cannot exploit the intensity information. Moreover, automatically identifying emotions like anger, fear, joy, sadness, disgust etc., from text introduces challenging scenarios where single tweet may contain multiple emotions with different intensities and some emotions may even co-occur in some of the tweets. In this paper, we propose an architecture, Experts Model, inspired from the standard Mixture of Experts (MoE) model. The key idea here is each expert learns different sets of features from the feature vector which helps in better emotion detection from the tweet. We compared the results of our Experts Model with both baseline results and top five performers of SemEval-2018 Task-1, Affect in Tweets (AIT). The experimental results show that our proposed approach deals with the emotion detection problem and stands at top-5 results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.