Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Content-Weighted Deep Image Compression (1904.00664v1)

Published 1 Apr 2019 in cs.CV

Abstract: Learning-based lossy image compression usually involves the joint optimization of rate-distortion performance. Most existing methods adopt spatially invariant bit length allocation and incorporate discrete entropy approximation to constrain compression rate. Nonetheless, the information content is spatially variant, where the regions with complex and salient structures generally are more essential to image compression. Taking the spatial variation of image content into account, this paper presents a content-weighted encoder-decoder model, which involves an importance map subnet to produce the importance mask for locally adaptive bit rate allocation. Consequently, the summation of importance mask can thus be utilized as an alternative of entropy estimation for compression rate control. Furthermore, the quantized representations of the learned code and importance map are still spatially dependent, which can be losslessly compressed using arithmetic coding. To compress the codes effectively and efficiently, we propose a trimmed convolutional network to predict the conditional probability of quantized codes. Experiments show that the proposed method can produce visually much better results, and performs favorably in comparison with deep and traditional lossy image compression approaches.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.