Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning Content-Weighted Deep Image Compression (1904.00664v1)

Published 1 Apr 2019 in cs.CV

Abstract: Learning-based lossy image compression usually involves the joint optimization of rate-distortion performance. Most existing methods adopt spatially invariant bit length allocation and incorporate discrete entropy approximation to constrain compression rate. Nonetheless, the information content is spatially variant, where the regions with complex and salient structures generally are more essential to image compression. Taking the spatial variation of image content into account, this paper presents a content-weighted encoder-decoder model, which involves an importance map subnet to produce the importance mask for locally adaptive bit rate allocation. Consequently, the summation of importance mask can thus be utilized as an alternative of entropy estimation for compression rate control. Furthermore, the quantized representations of the learned code and importance map are still spatially dependent, which can be losslessly compressed using arithmetic coding. To compress the codes effectively and efficiently, we propose a trimmed convolutional network to predict the conditional probability of quantized codes. Experiments show that the proposed method can produce visually much better results, and performs favorably in comparison with deep and traditional lossy image compression approaches.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.